The TFP interaction kernel
T he TFP interaction kernel A ( F i , F j ) = exp ( − ∥ F i − F j ∥ l p ) e i φ i j A(F_i, F_j) = \exp\left(-\frac{\|F_i - F_j\|}{l_p}\right) e^{i\varphi_{ij}} As it relates to the Green's function (propagator) of the linearized field δ F ( x ) \delta F(x) or δ a μ ( x ) \delta a_\mu(x) , thereby unifying the discrete causal flow model with the continuum field theory picture. 1. Role of the Kernel A ( F i , F j ) A(F_i, F_j) in TFP In the discrete TFP framework, the kernel: A ( F i , F j ) = exp ( − ∥ F i − F j ∥ l p ) e i ( τ i j l p + Δ φ i j topo ) A(F_i, F_j) = \exp\left(-\frac{\|F_i - F_j\|}{l_p}\right) e^{i\left(\frac{\tau_{ij}}{l_p} + \Delta \varphi^\text{topo}_{ij}\right)} encodes two key things: Amplitude : how strongly flows i i and j j interact — controlled by their misalignment. Phase : the causal distance (proper time τ i j \tau_{ij} ) and global/topological effects. This naturally suggests A ( F i , F j ) A(F_i, F_...