Quantum Gravity in Temporal Physics.
Example Calculation: Single Temporal Quantum in a Harmonic Potential Step 1: Define the Harmonic Potential Let's start with a simple harmonic potential defined as: V ( ϵ ) = 1 2 k ϵ 2 V(\epsilon) = \frac{1}{2} k \epsilon^2 V ( ϵ ) = 2 1 k ϵ 2 where k k k is the spring constant. For this example, we'll use a common value for k k k . Assume : k = 1 N/m k = 1 \, \text{N/m} k = 1 N/m (as an example). Step 2: Write the Hamiltonian The Hamiltonian for our single temporal quantum can be expressed as: H = 1 2 ( d ϵ d t ) 2 + 1 2 k ϵ 2 H = \frac{1}{2} \left(\frac{d \epsilon}{dt}\right)^2 + \frac{1}{2} k \epsilon^2 H = 2 1 ( d t d ϵ ) 2 + 2 1 k ϵ 2 Step 3: Schrödinger Equation The corresponding time-independent Schrödinger equation is given by: − ℏ 2 2 m d 2 Ψ ( ϵ ) d ϵ 2 + 1 2 k ϵ 2 Ψ ( ϵ ) = E Ψ ( ϵ ) -\frac{\hbar^2}{2m} \frac{d^2 \Psi(\epsilon)}{d \epsilon^2} + \frac{1}{2} k \epsilon^2 \Psi(\epsilon) = E \Psi(\epsilon) − 2 m ℏ 2 d ϵ 2 d 2 Ψ ( ϵ ) + 2 1 k ϵ 2 Ψ ( ϵ ...