TFP Unified Derivation
Icosahedral Efficiency (Ψ): 0.939326
Fine Structure (α⁻¹): 137.0990
S_SCALE (Derived): 6.5691
Weak Mixing Angle (sin²θW): 0.231246
Mass Predictions
| Name | Predicted | Actual | Unit | Accuracy |
|---|---|---|---|---|
| Electron | 0.510998 | 0.511 | MeV | 99.999609% |
| Muon | 103.850862 | 105.660 | MeV | 98.287774% |
| Tau | 1716.076040 | 1776.800 | MeV | 96.582398% |
| νe | 0.111088 | 0.110 | eV | 99.010848% |
| Proton | 938.213872 | 938.270 | MeV | 99.994018% |
| Neutron | 940.577131 | 939.560 | MeV | 99.891744% |
| Lambda | 1129.097785 | 1115.600 | MeV | 98.790087% |
| Xi0 | 1401.994880 | 1314.860 | MeV | 93.373068% |
| Omega⁻ | 1670.818597 | 1672.400 | MeV | 99.905441% |
| Proton (flow law) | 943.512262 | 938.270 | MeV | 99.441284% |
| W Boson | 80.970044 | 80.380 | GeV | 99.265932% |
| Z Boson | 95.185995 | 91.190 | GeV | 95.617946% |
Bell Violation (CHSH, Pentagonal TFP)
Photon: 2.8240
Electron: 2.8240
Muon: 2.6780
Tau: 2.4488
Flavor Mixing (Cabibbo)
Predicted θC: 13.28°
Experimental: 13.04°
Accuracy: 98.14%
CKM Matrix Elements (TFP)
Vud: 0.9732 (Exp: 0.973)
Vus: 0.2298 (Exp: 0.224)
Vub: 0.0039 (Exp: 0.0036)
Python Code
import numpy as np
import pandas as pd
# ==========================================================
# HARDWARE: 132-geometry, golden ratio, icosahedral efficiency
# ==========================================================
M0 = 0.510998 # electron mass (MeV)
K = 12.0 # coordination
H = K * (K - 1) # handshake budget = 132
F = 20.0 # faces
V = 12.0 # vertices
Phi = (1 + np.sqrt(5)) / 2 # golden ratio
# Icosahedral efficiency Psi
V_ICO = (5/12) * (3 + np.sqrt(5))
A_ICO = 5 * np.sqrt(3)
PSI = (np.pi**(1/3) * (6 * V_ICO)**(2/3)) / A_ICO
# Simplex, parity, substrate tension
SIMPLEX = (F / V) * (3/4)
PARITY = 1.0 - 1.0 / (2.0 * H)
OMEGA = (H / K) * PSI / SIMPLEX
# ==========================================================
# UNIVERSAL FLOW / SCALING LAWS
# ==========================================================
# Fine structure constant
EFF_CAPACITY = (H * (K - 1)) / (K * PSI)
HOLONOMY = (2 * np.pi) + Phi + Phi**-2
ALPHA_INV = EFF_CAPACITY + HOLONOMY
# Lepton ladder parameters
S_SCALE = (H / F) * (1.0 - 1.0 / (H * Phi))
def lepton_mass(gen: int) -> float:
"""Lepton masses from M0 via geometric expansion/interference."""
if gen == 1:
return M0
d = gen - 1
expansion = S_SCALE * d
interference = (SIMPLEX / PARITY) * (d**2)
return M0 * np.exp(expansion - interference)
def neutrino_mass_eV() -> float:
"""Electron neutrino mass scale (eV)."""
return M0 * (1 / H)**2 * (1 / (2 * H)) * 1e6
# Weak mixing angle via pentagonal series
S_unstable = 2 + 2 * Phi
S_stable = 2 / Phi
R = S_unstable / S_stable
w = np.sqrt(Phi)
def series_sum(H_val, S_u):
total = 0.0
for j in range(1, 100):
phi_j = Phi**(-j)
if phi_j < 1e-12:
break
total += phi_j / (1 + phi_j * H_val / S_u)
return total
S_sum = series_sum(H, S_unstable)
c_eff = 2 * (R * w * S_sum)
sin2_W = Phi**-3 * (1 - c_eff / H)
# ==========================================================
# BARYONS: geometric proton ratio + strange topology + tau tax
# ==========================================================
# Geometric proton-to-electron mass ratio (no empirical input)
XI_PROTON = (H**2) * (K**2) / (F * (OMEGA**2))
PROTON_RATIO = XI_PROTON
def baryon_mass(n_u: int, n_d: int, n_s: int) -> float:
"""
Baryon masses from:
- route backbone (u,d,s costs)
- geometric proton ratio
- topology-aware strange cost
- tau-mode recursion tax for s-s conflicts
"""
u_cost = 1.0
d_cost = 1.0 + 1.0 / H
# Strange cost + conflict count by topology
if (n_u, n_d, n_s) == (1, 1, 1): # Lambda: isolated s
s_cost = Phi * (1 - 1/(2*H))
conflicts = 0
elif (n_u, n_d, n_s) == (1, 0, 2): # Xi0: one s-s pair
s_cost = Phi + (K / H)
conflicts = 1
elif (n_u, n_d, n_s) == (0, 0, 3): # Omega-: s-triangle
s_cost = Phi + (K / H)
conflicts = 3
else:
s_cost = 0.0
conflicts = 0
current_route = n_u * u_cost + n_d * d_cost + n_s * s_cost
proton_route = 2 * u_cost + 1 * d_cost
base = M0 * PROTON_RATIO * (current_route / proton_route)
if conflicts > 0:
m_tau = lepton_mass(3)
base += conflicts * (1.0 / (6.0 * K)) * m_tau
return base
# ==========================================================
# CHSH / Bell violation (pentagonal TFP)
# ==========================================================
def chsh_tfp(gen: int) -> float:
base = 2.0
chi = 2.0
gap = (F - K) / (K * Phi) * chi
if gen == 0: # photon
return base + gap
d = gen - 1
interference = (SIMPLEX / PARITY) * (d**2)
generation_cost = interference / S_SCALE
pent_factor = 1 / (1 + d * (c_eff / H))
available = pent_factor / (1 + generation_cost)
return base + gap * available
# ==========================================================
# W/Z FLOW LAW FROM SAME HARDWARE
# ==========================================================
BOSON_SCALE = H * PSI * Phi
POWER_EXPONENT = (Phi**2) / 2.0
def flow_mass_N(N: float) -> float:
"""Mass in GeV from 132-flow squeezed through N active nodes."""
return BOSON_SCALE / (N**POWER_EXPONENT)
def W_mass_GeV() -> float:
return flow_mass_N(2.0)
def Z_mass_GeV() -> float:
#return W_mass_GeV() * np.sqrt(1 + Phi**-2)
# Synchronizes the Flow Law with the Pentagonal Series (sin2_W)
return W_mass_GeV() / np.sqrt(1 - sin2_W)
def proton_flow_MeV() -> float:
return flow_mass_N(60.0) * 1000.0
# ==========================================================
# CABIBBO, CKM
# ==========================================================
theta_c_rad = np.arctan(Phi**-3)
theta_c_deg = np.degrees(theta_c_rad)
Vud = np.cos(theta_c_rad)
Vus = np.sin(theta_c_rad)
Vub = (Phi**-12) * SIMPLEX
# ==========================================================
# RESULTS
# ==========================================================
rows = [
("Electron", lepton_mass(1), 0.511, "MeV"),
("Muon", lepton_mass(2), 105.66, "MeV"),
("Tau", lepton_mass(3), 1776.80, "MeV"),
("nu_e (eV)", neutrino_mass_eV(), 0.11, "eV"),
("Proton", baryon_mass(2,1,0), 938.27, "MeV"),
("Neutron", baryon_mass(1,2,0), 939.56, "MeV"),
("Lambda", baryon_mass(1,1,1),1115.60, "MeV"),
("Xi0", baryon_mass(1,0,2),1314.86, "MeV"),
("Omega-", baryon_mass(0,0,3),1672.40, "MeV"),
("Proton(flow)", proton_flow_MeV(), 938.27, "MeV"),
("W-Boson", W_mass_GeV(), 80.38, "GeV"),
("Z-Boson", Z_mass_GeV(), 91.19, "GeV"),
]
data = []
for name, pred, actual, unit in rows:
acc = (1 - abs(pred - actual) / actual) * 100
data.append((name, pred, actual, unit, acc))
df = pd.DataFrame(data, columns=["Name", "Pred", "Actual", "Unit", "Accuracy"])
print("=== TFP UNIFIED DERIVATION (SIMPLIFIED) ===")
print(f"Icosahedral Efficiency (Psi): {PSI:.6f}")
print(f"Fine Structure (alpha^-1): {ALPHA_INV:.4f}")
print(f"S_SCALE (Derived): {S_SCALE:.4f}")
print(f"Weak Mixing Angle (sin²θ_W): {sin2_W:.6f}")
print("-" * 65)
print(df.to_string(index=False))
print("\n=== BELL VIOLATION (CHSH, pentagonal TFP) ===")
for gen, name in enumerate(["Photon", "Electron", "Muon", "Tau"]):
print(f"{name:8}: {chsh_tfp(gen):.4f}")
print(f"\n=== FLAVOR MIXING (CABIBBO) ===")
print(f"Predicted θ_C: {theta_c_deg:.2f}° (Exp: 13.04°)")
print(f"\n=== CKM MATRIX ELEMENTS (TFP) ===")
print(f"Vud (Up-Down): {Vud:.4f} (Exp: 0.973)")
print(f"Vus (Up-Strange): {Vus:.4f} (Exp: 0.224)")
print(f"Vub (Up-Bottom): {Vub:.4f} (Exp: 0.0036)")