TFP: Motion in the static, spherically symmetric case

Motion in the static, spherically symmetric case

We assume:

  • Static central source, at spatial origin.

  • Time-independent fields:
    A(x,t)A(r)A(x,t) \to A(r), ϕ(x,t)ϕ(r)\phi(x,t) \to \phi(r), aμ(x,t)a0(r),ai=0a_\mu(x,t) \to a_0(r), a_i = 0

  • Spherical symmetry: all fields depend only on the radial coordinate rr.

  • Weak field metric (for now):
    ds2=(1+2Φ(r))dt2+(12Ψ(r))dr2+r2dΩ2ds^2 = - (1 + 2\Phi(r))\,dt^2 + (1 - 2\Psi(r))\,dr^2 + r^2 d\Omega^2


Step 2: Equations of Motion Recap (Simplified for Static Case)

From earlier, the coupled Lagrangian density was:

L=12(A)2+12A2(ϕ)2V(A)14fμνfμν+λAaμμϕ+(gravity terms)\mathcal{L} = \frac{1}{2} (\nabla A)^2 + \frac{1}{2} A^2 (\nabla \phi)^2 - V(A) - \frac{1}{4} f_{\mu\nu}f^{\mu\nu} + \lambda A a^\mu \partial_\mu \phi + \text{(gravity terms)}

We now extract the Euler-Lagrange equations in this static case:


1. Equation for A(r)A(r):

2AA(ϕ)2dVdA+λarrϕ=0\nabla^2 A - A (\nabla \phi)^2 - \frac{dV}{dA} + \lambda a^r \partial_r \phi = 0

2. Equation for ϕ(r)\phi(r):

(A2ϕ)+λ(Aar)=0\nabla \cdot (A^2 \nabla \phi) + \lambda \nabla \cdot (A a^r) = 0

3. Equation for a0(r)a^0(r) (only non-zero component):

Maxwell-like equation:

2a0(r)=λA(r)dϕdr\nabla^2 a^0(r) = \lambda A(r) \frac{d\phi}{dr}

This implies the charge density is sourced by the temporal flow phase gradient weighted by A, as previously discussed.


4. Einstein equation for gμνg_{\mu\nu} (static, weak field):

We focus on the Newtonian limit G0022Φ(r)G_{00} \sim -2\nabla^2 \Phi(r):

2Φ(r)=4πGρeff(r)\nabla^2 \Phi(r) = 4\pi G \rho_{\text{eff}}(r)

Where ρeff\rho_{\text{eff}} comes from the energy density in A,ϕ,a0A, \phi, a^0, and their interactions.


Step 3: Solve in Stages

Let's work through the simplest case first — a static point source, where:

  • V(A)=12mA2(AA0)2V(A) = \frac{1}{2} m_A^2 (A - A_0)^2

  • ϕ(r)=q4πr2A(r)\phi'(r) = \frac{q}{4\pi r^2 A(r)}(from Gauss's law-like structure)

  • Central charge density gives 2a0(r)=δ3(r)\nabla^2 a^0(r) = \delta^3(r) (or smoothed version)


🔹 Solve Maxwell-like Equation

From:

2a0=λA(r)ϕ(r)\nabla^2 a^0 = \lambda A(r) \phi'(r)

Insert the above estimate for ϕ(r)\phi'(r):

2a0=λA(r)q4πr2A(r)=λq4πr22a0=λq4πr2\nabla^2 a^0 = \lambda A(r) \cdot \frac{q}{4\pi r^2 A(r)} = \frac{\lambda q}{4\pi r^2} \Rightarrow \nabla^2 a^0 = \frac{\lambda q}{4\pi r^2}

This integrates to:

a0(r)=λq4πr+consta^0(r) = -\frac{\lambda q}{4\pi r} + \text{const}

✅ Matches Coulomb potential!


🔹 Solve for ϕ(r)\phi(r)

From Gauss-like law:

(A2ϕ)=λ(Aar)\nabla \cdot (A^2 \nabla \phi) = -\lambda \nabla \cdot (A a^r)

If ar=0a^r = 0, then:

1r2ddr(r2A2dϕdr)=0A2dϕdr=constr2dϕdr=q4πr2A2\frac{1}{r^2} \frac{d}{dr} \left( r^2 A^2 \frac{d\phi}{dr} \right) = 0 \Rightarrow A^2 \frac{d\phi}{dr} = \frac{\text{const}}{r^2} \Rightarrow \frac{d\phi}{dr} = \frac{q}{4\pi r^2 A^2}

So ϕ(r)\phi(r) is again logarithmic or Coulomb-like, depending on A(r).


🔹 Solve for A(r)A(r)

Now plug the expression for ϕ(r)\phi'(r) into the equation for A:

2AA(q2(4π)2r4A4)mA2(AA0)=0\nabla^2 A - A \left( \frac{q^2}{(4\pi)^2 r^4 A^4} \right) - m_A^2 (A - A_0) = 0

This is a nonlinear second-order ODE for A(r). But in the weak field limit, we linearize:

Let A(r)=A0+δA(r)A(r) = A_0 + \delta A(r), then the equation becomes:

2δAmA2δAq2(4π)2r4A03=0\nabla^2 \delta A - m_A^2 \delta A - \frac{q^2}{(4\pi)^2 r^4 A_0^3} = 0

Which is solvable — the solution will show screening (Yukawa-type decay) if mA0m_A \neq 0, and a slower decay if massless.


🔹 Solve for Gravitational Potential Φ(r)\Phi(r)

We use the stress-energy from A,ϕ,a0A, \phi, a^0, compute the energy density, and plug into:

2Φ(r)=4πGρeff(r)\nabla^2 \Phi(r) = 4\pi G \rho_{\text{eff}}(r)

The dominant contribution (for static point charge) will yield:

Φ(r)GMeffr\Phi(r) \sim -\frac{G M_{\text{eff}}}{r}

Where MeffM_{\text{eff}} includes mass from A-field condensation, energy in ϕ\phi gradients, and possibly in a0a^0.


✅ Summary of Results

QuantityResult
a0(r)a^0(r)
λq4πr-\dfrac{\lambda q}{4\pi r} → Coulomb potential
ϕ(r)\phi(r)
q4πr2A(r)2dr\int \dfrac{q}{4\pi r^2 A(r)^2} dr → phase gradient structure
A(r)A(r)
Solves nonlinear ODE; approximates vacuum + Yukawa screening
Φ(r)\Phi(r)
Newtonian potential with effective mass from flow energy

Comments

Popular posts from this blog

The Ethics of two

Temporal Physics: A New Framework

Thinking Through Tools: AI, Cognition, and Human Adaptation