TFP: Perturbations Around the Vacuum
Perturbations Around the Vacuum Start from the vacuum solution: A ( x ) = A 0 A(x) = A_0 (constant amplitude) ϕ ( x ) = ω t \phi(x) = \omega t (background phase) a μ ( x ) = − ω δ μ 0 a_\mu(x) = -\omega \delta^0_\mu (cancels time evolution) g μ ν = η μ ν g_{\mu\nu} = \eta_{\mu\nu} (flat spacetime) Now introduce small perturbations : ϕ ( x ) = ω t + δ ϕ ( x ) \phi(x) = \omega t + \delta\phi(x) a μ ( x ) = − ω δ μ 0 + δ a μ ( x ) a_\mu(x) = -\omega \delta^0_\mu + \delta a_\mu(x) These combine in the covariant derivative as: D μ ϕ = ∂ μ ϕ + a μ = δ μ 0 ω + ∂ μ δ ϕ + δ a μ − ω δ μ 0 = ∂ μ δ ϕ + δ a μ D_\mu \phi = \partial_\mu \phi + a_\mu = \delta_\mu^0 \omega + \partial_\mu \delta\phi + \delta a_\mu - \omega \delta_\mu^0 = \partial_\mu \delta\phi + \delta a_\mu So the entire dynamics will be governed by the perturbations: χ μ ( x ) ≡ ∂ μ δ ϕ + δ a μ \chi_\mu(x) \equiv \partial_\mu \delta\phi + \delta a_\mu Equation of Motion for δ a μ \delta a_\mu ...