TFP: Perturbations Around the Vacuum

Perturbations Around the Vacuum

Start from the vacuum solution:

  • A(x)=A0A(x) = A_0 (constant amplitude)

  • ϕ(x)=ωt\phi(x) = \omega t (background phase)

  • aμ(x)=ωδμ0a_\mu(x) = -\omega \delta^0_\mu (cancels time evolution)

  • gμν=ημνg_{\mu\nu} = \eta_{\mu\nu} (flat spacetime)

Now introduce small perturbations:

  • ϕ(x)=ωt+δϕ(x)\phi(x) = \omega t + \delta\phi(x)

  • aμ(x)=ωδμ0+δaμ(x)a_\mu(x) = -\omega \delta^0_\mu + \delta a_\mu(x)

These combine in the covariant derivative as:

Dμϕ=μϕ+aμ=δμ0ω+μδϕ+δaμωδμ0=μδϕ+δaμD_\mu \phi = \partial_\mu \phi + a_\mu = \delta_\mu^0 \omega + \partial_\mu \delta\phi + \delta a_\mu - \omega \delta_\mu^0 = \partial_\mu \delta\phi + \delta a_\mu

So the entire dynamics will be governed by the perturbations:

χμ(x)μδϕ+δaμ\chi_\mu(x) \equiv \partial_\mu \delta\phi + \delta a_\mu

Equation of Motion for δaμ\delta a_\mu

Start from the full equation:

νfνμ+A2(μϕ+aμ)=0\partial_\nu f^{\nu\mu} + A^2 (\partial^\mu \phi + a^\mu) = 0

Linearize:

  • A=A0+δAA2A02A = A_0 + \delta A \Rightarrow A^2 \approx A_0^2

  • fμν=μδaννδaμf^{\mu\nu} = \partial^\mu \delta a^\nu - \partial^\nu \delta a^\mu

  • μϕ+aμ=χμ\partial^\mu \phi + a^\mu = \chi^\mu

Then to first order:

ν(νδaμμδaν)+A02χμ=0δaμμ(νδaν)+A02χμ=0\partial_\nu (\partial^\nu \delta a^\mu - \partial^\mu \delta a^\nu) + A_0^2 \chi^\mu = 0 \Rightarrow \Box \delta a^\mu - \partial^\mu (\partial_\nu \delta a^\nu) + A_0^2 \chi^\mu = 0

Now substitute χμ=μδϕ+δaμ\chi^\mu = \partial^\mu \delta\phi + \delta a^\mu:

δaμμ(νδaν)+A02(μδϕ+δaμ)=0\Box \delta a^\mu - \partial^\mu (\partial_\nu \delta a^\nu) + A_0^2 (\partial^\mu \delta\phi + \delta a^\mu) = 0

🔄 Coupled Equation for δϕ\delta\phi

From the perturbed version of:

μ(A2(μϕ+aμ))=0A02μχμ=0\partial_\mu \left( A^2 (\partial^\mu \phi + a^\mu) \right) = 0 \Rightarrow A_0^2 \partial_\mu \chi^\mu = 0

So we have:

μ(μδϕ+δaμ)=0δϕ+μδaμ=0\partial_\mu (\partial^\mu \delta\phi + \delta a^\mu) = 0 \Rightarrow \Box \delta\phi + \partial_\mu \delta a^\mu = 0

This gives the continuity-like constraint between δϕ\delta\phi and δaμ\delta a^\mu.


🧠 Interpretation

Define:

  • δaμvector potential perturbation (gauge field)\delta a^\mu \equiv \text{vector potential perturbation (gauge field)}

  • δϕtemporal phase fluctuation\delta\phi \equiv \text{temporal phase fluctuation}

Then:

Main Field Equation:

δaμ+A02δaμ=μ(νδaνA02δϕ)\Box \delta a^\mu + A_0^2 \delta a^\mu = \partial^\mu \left( \partial_\nu \delta a^\nu - A_0^2 \delta\phi \right)

This closely resembles the Proca equation, with a mass term m2=A02m^2 = A_0^2, unless we fix gauge.

Constraint Equation:

δϕ+μδaμ=0divergence of vector potential tied to scalar fluctuation\Box \delta\phi + \partial_\mu \delta a^\mu = 0 \Rightarrow \text{divergence of vector potential tied to scalar fluctuation}

✅ Choose Gauge: Lorenz-type

Let’s define a gauge-fixing condition that simplifies these:

μδaμ=A02δϕ\partial_\mu \delta a^\mu = -A_0^2 \delta\phi

Then the main field equation becomes:

δaμ+A02δaμ=0\Box \delta a^\mu + A_0^2 \delta a^\mu = 0

This is a massive wave equation:

  • If A0=0A_0 = 0: recovers Maxwell’s equation in Lorenz gauge

  • If A00A_0 \ne 0: gives Proca equation → photon acquires mass from background flow


✅ Result: Maxwell’s Equations Emerge in Limit A00A_0 \to 0

In this limit:

  • Background flow vanishes

  • Gauge field dynamics becomes:

δaμ=0,μδaμ=0\Box \delta a^\mu = 0, \quad \partial_\mu \delta a^\mu = 0

Which is exactly Maxwell’s equations in Lorenz gauge.


🔚 Summary

AspectResult
Perturbed gauge fieldδaμ\delta a^\mu satisfies wave equation with mass term
Emergent Maxwell equationsIn limit A00A_0 \to 0, mass vanishes → Maxwell's theory
Scalar fluctuation δϕ\delta\phi
Enforces divergence constraint on δaμ\delta a^\mu
Gauge structureEmerges naturally from flow coupling and symmetry

Comments

Popular posts from this blog

The Ethics of two

Temporal Physics: A New Framework

Thinking Through Tools: AI, Cognition, and Human Adaptation