Equations of Motion for the Flow Fluctuation Field δF

 

Equations of Motion for the Flow Fluctuation Field δF

To derive the equations of motion for the fluctuation field δF from my proposed action, I analyze each term in the effective action Γ[g, δF], treating the emergent metric g₍μν₎ as a fixed background during variation.

1. Full Action Recap

The effective action is

Γ[g,δF]=d4xg[12gμνμδFνδFKineticV(δF)Potentialλ2 ⁣d4yg(y)K(xy)δF(x)δF(y)Nonlocal Interaction].\Gamma[g,\delta F] =\int d^4x\,\sqrt{-g}\Bigl[\underbrace{\tfrac12\,g^{\mu\nu}\,\partial_\mu\delta F\,\partial_\nu\delta F}_{\text{Kinetic}} -\underbrace{V(\delta F)}_{\text{Potential}} -\underbrace{\tfrac\lambda2\!\int d^4y\,\sqrt{-g(y)}\,K(x-y)\,\delta F(x)\,\delta F(y)}_{\text{Nonlocal Interaction}}\Bigr].

2. Variation of the Action

The Euler–Lagrange equation, δΓ/δδF(x)=0\delta\Gamma/\delta\delta F(x)=0, breaks into three pieces.

• Kinetic Term

Γkin=12 ⁣d4xggμνμδFνδF        δΓkinδδF(x)=μ ⁣(ggμννδF)=μμδF.\Gamma_{\rm kin} =\tfrac12\!\int d^4x\,\sqrt{-g}\,g^{\mu\nu}\,\partial_\mu\delta F\,\partial_\nu\delta F \;\;\Longrightarrow\;\; \frac{\delta\Gamma_{\rm kin}}{\delta\delta F(x)} =-\partial_\mu\!\bigl(\sqrt{-g}\,g^{\mu\nu}\partial_\nu\delta F\bigr) =-\nabla_\mu\nabla^\mu\delta F.

• Potential Term

Γpot=d4xg  V(δF),V(δF)=α2(δF2F02)2        δΓpotδδF(x)=gV(δF)=g2α(δF3δFF02).\Gamma_{\rm pot} =-\int d^4x\,\sqrt{-g}\;V(\delta F), \quad V(\delta F)=\tfrac\alpha2\bigl(\delta F^2-F_0^2\bigr)^2 \;\;\Longrightarrow\;\; \frac{\delta\Gamma_{\rm pot}}{\delta\delta F(x)} =-\sqrt{-g}\,V'(\delta F) =-\sqrt{-g}\,2\alpha\bigl(\delta F^3-\delta F\,F_0^2\bigr).

• Nonlocal Interaction

Γint=λ2 ⁣d4xg(x) ⁣d4yg(y)K(xy)δF(x)δF(y)        δΓintδδF(x)=λg(x) ⁣d4yg(y)K(xy)δF(y).\Gamma_{\rm int} =-\tfrac\lambda2\!\int d^4x\,\sqrt{-g(x)}\!\int d^4y\,\sqrt{-g(y)}\,K(x-y)\,\delta F(x)\,\delta F(y) \;\;\Longrightarrow\;\; \frac{\delta\Gamma_{\rm int}}{\delta\delta F(x)} =-\lambda\,\sqrt{-g(x)}\!\int d^4y\,\sqrt{-g(y)}\,K(x-y)\,\delta F(y).

3. Combined Equation of Motion

Putting all pieces together, dividing through by g(x)\sqrt{-g(x)}, gives

μμδFV(δF)λ ⁣d4yg(y)K(xy)δF(y)  =  0.\boxed{ \nabla_\mu\nabla^\mu\,\delta F -\,V'(\delta F) -\,\lambda\!\int d^4y\,\sqrt{-g(y)}\,K(x-y)\,\delta F(y) \;=\;0. }

Or, in expanded form,

1gμ ⁣(ggμννδF)+2αδF(F02δF2)λ ⁣d4yg(y)K(xy)δF(y)=0.\frac1{\sqrt{-g}}\partial_\mu\!\bigl(\sqrt{-g}\,g^{\mu\nu}\partial_\nu\delta F\bigr) +2\alpha\,\delta F\,(F_0^2-\delta F^2) -\lambda\!\int d^4y\,\sqrt{-g(y)}\,K(x-y)\,\delta F(y) =0.

4. How This Fits Together

  • Double-well potential V(δF)V(\delta F) drives fluctuations toward ±F0\pm F_0.

  • Covariant Laplacian μμδF\nabla_\mu\nabla^\mu\,\delta F encodes local alignment of flows.

  • Kernel K(xy)K(x-y) implements Lorentz-invariant, causal interactions across the flow network.

  • Emergent metric gμνg_{\mu\nu} itself is sourced by flow fluctuations (via δFδF\langle\partial\delta F\,\partial\delta F\rangle), closing the self-consistent loop: fluctuations shape geometry, geometry guides fluctuations.

5. Key Special Cases

  • Flat spacetime & no nonlocality (gμνημν,λ=0g_{\mu\nu}\to\eta_{\mu\nu},\,\lambda=0):

    μμδF+2αδF(F02δF2)=0,\partial_\mu\partial^\mu\,\delta F +2\alpha\,\delta F\,(F_0^2-\delta F^2) =0,

    i.e. the standard nonlinear Klein–Gordon with spontaneous symmetry breaking.

  • Nonlocal memory effects arise from K(xy)δF(y)dy\int K(x-y)\,\delta F(y)\,dy.

  • Gravitational coupling emerges when one sets gμν=δFδFg_{\mu\nu}=\langle\partial\delta F\,\partial\delta F\rangle, making the flow dynamics and spacetime geometry fully intertwined.

Comments

Popular posts from this blog

The Ethics of two

Temporal Physics: A New Framework

Thinking Through Tools: AI, Cognition, and Human Adaptation