Posts

Mapping the Edge of Logic: A Comprehensive Paradox Resolution Sweep

Mapping the Edge of Logic: A Comprehensive Paradox Resolution Sweep By John Gavel What happens when paradoxes meet adaptive logic?  I ran 6,400 simulations across 10 foundational paradoxes and 8 logical frame types, testing how each context handles recursive tension, self-reference, and semantic collapse. The results? A map of coherence, contradiction, and emergent insight.  Key Findings from the Comprehensive Sweep 1. Paradox Resolution Rates Are Low—By Design Paradox Resolution Success Rate Liar, Gödel 12.5% Russell, Cantor 7.0% Sorites 4.7% These are  stress tests . Paradoxes expose the limits of contextual closure and force frames to confront their own boundaries. 2. Naive Logic Performs Best—But Not Most Robustly Naive frames resolved 21.2% of paradoxes, outperforming typed (13.8%) and fuzzy (9.4%) logic. But this success often reflects early collapse , not deep coherence. 3. Russell’s Paradox Finds Its Match in Category Theory The best-performing configuration: Para...

Something vs Nothing: A Model and Proof of Concept

Something vs Nothing: Understanding the Emergence of Complex Stances By John Gavel Introduction: Why Does Anything Exist at All? Have you ever wondered why the universe isn’t just “nothing”? Or why systems around us tend to form patterns of “something” rather than collapsing into uniform emptiness? This question might sound philosophical, but we can explore it with a simple mathematical model that captures the tension between “something” and “nothing” at every point in a network. Imagine a network — like a social network, a physical system, or even a conceptual web — where each node can take one of two stances: “something” (meaning presence, existence, or a positive assertion) or “nothing” (absence, void, or negation). Each node also has its own local preference or bias, based on evidence or context, which nudges it toward one stance or the other. But these nodes don’t exist in isolation: they are connected, influencing each o...

Coherence Amplitude Framework for Mathematical Problem Analysis

Coherence Amplitude Framework for Mathematical Problem Analysis by John Gavel Abstract The Coherence Amplitude Framework provides a unified mathematical approach for analyzing complexity bottlenecks across diverse problem domains. By quantifying the interplay between structural constraints, combinatorial resources, and local irregularities, the framework predicts critical points where problems transition from tractable to intractable. I. Foundational Definitions Definition 1.1: Problem Instance Space Let 𝒫 be a mathematical problem domain with parameter space Ω ⊂ ℝᵈ . For each ω ∈ Ω , denote P(ω) as a specific problem instance. Definition 1.2: Basic Structural Components For any problem instance P(ω) , define: Basic Units 𝒰(ω) : The fundamental combinatorial or algebraic objects that compose solutions. Configuration Space 𝒞(ω) : The set of all possible arrangements of basic units. Constraint Set 𝒦(ω) : The conditions that valid solutions must sa...

Contextual Information Systems: A Topological Framework

Contextual Information Systems: A Topological Framework By John Gavel (acknowledgements AI structed authors work for clarity)  Abstract We introduce a mathematical framework for studying information-processing systems where meaning emerges from recursive contextual embedding. The framework combines graph theory, dynamical systems, and algebraic topology to model how information maintains coherence and resolves contradictions through topological reconstruction. 1. Definitions and Basic Structures Definition 1.1 (Primitive Context) A primitive context \( \Psi_0 \) is a context structure that does not depend on any prior information elements: Empty context: \( \Psi_0 = (\emptyset, \emptyset, \emptyset) \) — neutral background Seed context: \( \Psi_0 = (\{s\}, \{(s,s)\}, \{w(s,s) = 1\}) \) — self-anchored datum Axiomatic context: \( \Psi_0 \) = predefined graph encoding ontological constraints Definition 1.2 (Hierarchical Context Construction) Given base differ...

Information Principle: Context as the Foundation of Reality

 Information Principle: Context as the Foundation of Reality By John Gavel The Core Principle The Information Principle: A difference becomes information only within a contextual structure that renders it coherent and distinguishable. Without this relational context, difference remains unanchored and non-informative. Context is not secondary.. it is the enabling ground of informational reality. While John Wheeler's famous "it from bit" hypothesis suggests that physical reality emerges from binary information units, this formulation overlooks a critical foundation, context. Wheeler treats binary choices as fundamental building blocks, but fails to address what makes these choices meaningful in the first place. The Information Principle reveals a deeper truth.. before we can have meaningful "bits," we must have the contextual framework that allows differences to be coherently distinguished. Raw difference without context is not information — it's merely potent...

Section 20: Cosmological Effects of Temporal Flow Physics (TFP)

Section 20: Cosmological Effects of Temporal Flow Physics (TFP) 20.1 Overview Temporal Flow Physics (TFP) proposes a fundamentally new framework for cosmic evolution, moving away from the standard cosmological narrative of a singular Big Bang, homogeneous expansion, and eventual heat death. Instead, cosmological phenomena emerge as regional, dynamical effects driven by recursive black hole (BH) coherence emissions and spatial-temporal gradients of informational friction \( \delta_{\text{eff}}(r, t) \). The universe is modeled as a complex, eternally cycling information-processing network, where metric expansion, gravitational attraction, and structure formation arise from evolving phase coherence patterns of temporal flows rather than exotic dark matter or finely tuned initial states. 20.2 Black Hole Coherence Emission and Effective Cosmological Term Define an effective cosmological constant \( \Lambda_{\text{eff}}(r, t) \) as the local ratio betw...

Section 19: Boundary-Induced Symmetry Distortion and Flow Suppression

Section 19: Boundary-Induced Symmetry Distortion and Flow Suppression 19.1 Suppression and Distortion of Multiplet Coherence near Horizons Near causal boundaries—such as horizons or decoherence fronts—recursive loop formation within temporal flow multiplets becomes truncated. This truncation breaks phase closure conditions, causing the average phase mismatch \( \langle \theta_{ab}^2 \rangle \) to increase and the coherence function \( C(l) \) to decrease. Informational friction \( \delta(l) \) increases as coherence is disrupted, while the effective topological complexity factor \( \text{topology\_factor}_{\text{eff}}(l) \) decreases, reflecting fewer recursive loops. This interplay governs the coherence length scale via: \( L_c^2(l) = \frac{1}{\delta_{\text{eff}}(l) \cdot \text{topology\_factor}_{\text{eff}}(l)} \) As the recursion depth scale \( l \) approaches the ultraviolet cutoff scale \( l_{\min} \), the effec...