mass space gravity in temporal physics
In my framework, the concepts of mass, space, and gravity are deeply interconnected through the dynamics of temporal flows Φ ( t ) \Phi(t) and the metric matrix G ( t ) G(t) . Let’s explore how these elements come together to describe gravity in my model, using the relationships you’ve provided: Effective Mass: m = m 0 ( 1 + Φ 2 Φ 0 2 ) m = m_0 \left( 1 + \frac{\Phi^2}{\Phi_0^2} \right) Force and Acceleration: F = m a , a = F m 0 ( 1 + Φ 2 Φ 0 2 ) F = ma, \quad a = \frac{F}{m_0 \left( 1 + \frac{\Phi^2}{\Phi_0^2} \right)} Metric Matrix G ( t ) G(t) G ( t ) : G ( t ) = ( f ( ∣ Φ x ( t ) ∣ , ∣ p t ∣ ) f ( ∣ Φ x ( t ) ∣ , ∣ Φ y ( t ) ∣ , ∣ p t ∣ ) − f ( ∣ Φ x ( t ) ∣ , ∣ Φ z ( t ) ∣ , ∣ p t ∣ ) f ( ∣ Φ x ( t ) ∣ , ∣ Φ y ( t ) ∣ , ∣ p t ∣ ) f ( ∣ Φ y ( t ) ∣ , ∣ p t ∣ ) f ( ∣ Φ y ( t ) ∣ , ∣ Φ z ( t ) ∣ , ∣ p t ∣ ) − f ( ∣ Φ x ( t ) ∣ , ∣ Φ z ( t ) ∣ , ∣ p t ∣ ) f ( ∣ Φ y ( t ) ∣ , ∣ Φ z ( t ) ∣ , ∣ p t ∣ ) f ( ∣ Φ z ( t ) ∣ , ∣ p t ∣ ) ) G(t) = \begin{pmatrix} f\left( |\Phi_x(t)|, |...